Publications

Distinct contribution of adult-born hippocampal granule cells to context encoding
2016 Stellate Comms 2016 Stellate Comms

Distinct contribution of adult-born hippocampal granule cells to context encoding

Danielson NB, Kaifosh P, Zaremba JD, Lovett-Barron M, Tsai J, Denny CA, Balough EM, Goldberg AR, Drew DJ, Hen R, Losonczy A, Kheirbek MA (2016)

Neuron

Adult-born granule cells (abGCs) have been implicated in cognition and mood; however, it remains unknown how these cells behave in vivo. Here, we have used two-photon calcium imaging to monitor the activity of young abGCs in awake behaving mice. We find that young adult-born neurons fire at a higher rate in vivo but paradoxically exhibit less spatial tuning than their mature counterparts. When presented with different contexts, mature granule cells underwent robust remapping of their spatial representations, and the few spatially tuned adult-born cells remapped to a similar degree. We next used optogenetic silencing to confirm the direct involvement of abGCs in context encoding and discrimination, consistent with their proposed role in pattern separation. These results provide the first in vivo characterization of abGCs and reveal their participation in the encoding of novel information.

Preview by Ramsaran and Frankland (pdf)

Read More
Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action
2016 Stellate Comms 2016 Stellate Comms

Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action

Carvalho Poyraz F, Holzner E, Bailey MR, Meszaros J, Kenney L, Kheirbek MA, Balsam PD, Kellendonk C (2016)

Journal of Neuroscience

Altered dopamine D2 receptor (D2R) binding in the striatum has been associated with abnormal motivation in neuropsychiatric disorders, including schizophrenia. Here, we tested whether motivational deficits observed in mice with upregulated D2Rs (D2R-OEdev mice) are reversed by decreasing function of the striatopallidal “no-go” pathway. To this end, we expressed the G!i -coupled designer receptor hM4D in adult striatopallidal neurons and activated the receptor with clozapine-N-oxide (CNO). Using a head-mounted miniature microscope we confirmed with calcium imaging in awake mice that hM4D activation by CNO inhibits striatopallidal function measured as disinhibited downstream activity in the globus pallidus. Mice were then tested in three operant tasks that address motivated behavior, the progressive ratio task, the progressive hold-down task, and outcome devaluation. Decreasing striatopallidal function in the dorsomedial striatum or nucleus accumbens core enhanced motivation in D2R-OEdev mice and control littermates. This effect was due to increased response initiation but came at the cost of goal-directed efficiency. Moreover, response vigor and the sensitivity to changes in reward value were not altered. Chronic activation of hM4D by administering CNO for 2 weeks in drinking water did not affect motivation due to a tolerance effect. However, the acute effect of CNO on motivation was reinstated after discontinuing chronic treatment for 48 h. Used as a therapeutic approach, striatopallidal inhibition should consider the risk of impairing goal-directed efficiency and behavioral desensitization.

Read More
GluN2B-containing NMDA receptors on adult-born granule cells contribute to the antidepressant action of fluoxetine
2016 Stellate Comms 2016 Stellate Comms

GluN2B-containing NMDA receptors on adult-born granule cells contribute to the antidepressant action of fluoxetine

Tannenholz L, Hen R, Kheirbek MA (2016)

Frontiers in Neuroscience

Ablation of adult neurogenesis in mice has revealed that young adult-born granule cells (abGCs) are required for some of the behavioral responses to antidepressants (ADs), yet the mechanism by which abGCs contribute to AD action remains unknown. During their maturation process, these immature neurons exhibit unique properties that could underlie their ability to influence behavioral output. In particular, abGCs in the DG exhibit a period of heightened plasticity 4–6 weeks after birth that is mediated by GluN2B-expressing NMDA receptors. The functional contribution of this critical window to AD responsiveness is unclear. Here, we determined the behavioral and neurogenic responses to the AD fluoxetine (FLX) in mice lacking GluN2B-containing NMDA receptors in abGCs. We found that these mice exhibited an attenuated response to FLX in a neurogenesis-dependent behavioral assay of FLX action, while neurogenesis-independent behaviors were unaffected by GluN2B deletion. In addition, deletion of GluN2B attenuated FLX-induced increases in dendritic complexity of abGCs suggesting that the blunted behavioral efficacy of FLX may be caused by impaired differentiation of young abGCs.

Read More
Gremlin 1 identifies a skeletal stem cell with bone, cartilage and reticular stromal potential
2015 Stellate Comms 2015 Stellate Comms

Gremlin 1 identifies a skeletal stem cell with bone, cartilage and reticular stromal potential

Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa A, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Kang H, Caldwell J, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar D, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders A, Manieri N, Muthupalani A, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere JP, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC (2015)

Cell

The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).

Read More
Loss of striatonigral GABAergic presynaptic inhibition enables motor sensitization in Parkinsonian mice
2015 Stellate Comms 2015 Stellate Comms

Loss of striatonigral GABAergic presynaptic inhibition enables motor sensitization in Parkinsonian mice

Borgkvist A, Avegno EM, Wong MY, Kheirbek MA, Sonders MS, Hen R, Sulzer D (2015)

Neuron

Degeneration of dopamine (DA) neurons in Parkinson’s disease (PD) causes hypokinesia, but DA replacement therapy can elicit exaggerated voluntary and involuntary behaviors that have been attributed to enhanced DA receptor sensitivity in striatal projection neurons. Here we reveal that in hemiparkinsonian mice, striatal D1 receptor-expressing medium spiny neurons (MSNs) directly projecting to the substantia nigra reticulata (SNr) lose tonic presynaptic inhibition by GABAB receptors. The absence of presynaptic GABAB response potentiates evoked GABA release from MSN efferents to the SNr and drives motor sensitization. This alternative mechanism of sensitization suggests a synaptic target for PD pharmacotherapy.

Read More
Finding the roots of adult neurogenesis
2015 Stellate Comms 2015 Stellate Comms

Finding the roots of adult neurogenesis

Kheirbek MA (2015)

Cell

In select areas of the brain, neural stem cells produce new neurons throughout life. An elegant new study in this issue of Cell reveals the origins of a stem cell population that persists into adulthood and uncovers a surprising relationship between neurons born in the mature brain and those generated early in development.

Read More
Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons
2015 Stellate Comms 2015 Stellate Comms

Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons

Drew LJ, Kheirbek MA, Luna VM, Denny CA, Cloidt MA, Wu MV, Jain S, Scharfman HE, Hen R (2015)

Hippocampus

Robust incorporation of new principal cells into preexisting circuitry in the adult mammalian brain is unique to the hippocampal dentate gyrus (DG). We asked if adult-born granule cells (GCs) might act to regulate processing within the DG by modulating the substantially more abundant mature GCs. Optogenetic stimulation of a cohort of young adult-born GCs (0 to 7 weeks post-mitosis) revealed that these cells activate local GABAergic interneurons to evoke strong inhibitory input to mature GCs. Natural manipulation of neurogenesis by aging—to decrease it—and housing in an enriched environment—to increase it—strongly affected the levels of inhibition. We also demonstrated that elevating activity in adult-born GCs in awake behaving animals reduced the overall number of mature GCs activated by exploration. These data suggest that inhibitory modulation of mature GCs may be an important function of adult-born hippocampal neurons.

Read More
Local and regional heterogeneity underlying hippocampal modulation of cognition and mood
2014 Stellate Comms 2014 Stellate Comms

Local and regional heterogeneity underlying hippocampal modulation of cognition and mood

Tannenholz L, Jimenez JC, Kheirbek MA (2014)

Frontiers in Behavioral Neuroscience

While the hippocampus has been classically studied for its role in learning and memory, there is significant support for a role of the HPC in regulating emotional behavior. Emerging research suggests these functions may be segregated along the dorsoventral axis of the HPC. In addition to this regional heterogeneity, within the HPC, the dentate gyrus is one of two areas in the adult brain where stem cells continuously give rise to new neurons. This process can influence and be modulated by the emotional state of the animal, suggesting that adult neurogenesis within the DG may contribute to psychiatric disorders and cognitive abilities. Yet, the exact mechanism by which these newborn neurons influence behavior remains unknown. Here, we will examine the contribution of hippocampal neurogenesis to the output of the HPC, and suggest that the role of neurogenesis may vary along the DV axis. Next, we will review literature indicating that anatomical connectivity varies along the DV axis of the HPC, and that this underlies the functional segregation along this axis. This analysis will allow us to synthesize novel hypotheses for the differential contribution of the HPC to cognition and mood.

Read More
Dendritic inhibition in the hippocampus supports fear learning
2014 Stellate Comms 2014 Stellate Comms

Dendritic inhibition in the hippocampus supports fear learning

Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD, Reardon TR, Turi GF, Hen R, Zemelman BV, Losonczy A (2014)

Science

Fear memories guide adaptive behavior in contexts associated with aversive events. The hippocampus forms a neural representation of the context that predicts aversive events. Representations of context incorporate multisensory features of the environment, but must somehow exclude sensory features of the aversive event itself. We investigated this selectivity using cell type–specific imaging and inactivation in hippocampal area CA1 of behaving mice. Aversive stimuli activated CA1 dendrite-targeting interneurons via cholinergic input, leading to inhibition of pyramidal cell distal dendrites receiving aversive sensory excitation from the entorhinal cortex. Inactivating dendrite-targeting interneurons during aversive stimuli increased CA1 pyramidal cell population responses and prevented fear learning. We propose subcortical activation of dendritic inhibition as a mechanism for exclusion of aversive stimuli from hippocampal contextual representations during fear learning.

Read More
Add neurons, subtract anxiety
2014 Stellate Comms 2014 Stellate Comms

Add neurons, subtract anxiety

Kheirbek MA, Hen R (2014)

Scientific American

To keep memories from becoming jumbled, the brain must encode the distinct features of events and situations in a way that allows them to be distinguished from one another—a process called pattern separation. Pattern separation enables us to distinguish dangerous situations from similar ones that pose no risk. People with defects in this ability may be prone to anxiety disorders. The process occurs in one of the two regions of the brain that generate neurons throughout life. These fledgling cells seem to be critical to pattern separation. Interventions that specifically boost the ranks of rookie neurons could provide new ways to regulate mood and possibly treat conditions such as post-traumatic stress disorder.

Read More
Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis
2014 Stellate Comms 2014 Stellate Comms

Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis

Denny CA, Kheirbek MA, Alba EL, Tanaka, KF, Brachman RA, Laughman KB, Tomm NK, Turi GF, Losonczy A, Hen R (2014)

Neuron

Memory traces are believed to be ensembles of cells used to store memories. To visualize memory traces, we created a transgenic line that allows for the comparison between cells activated during encoding and expression of a memory. Mice re-exposed to a fearinducing context froze more and had a greater percentage of reactivated cells in the dentate gyrus (DG) and CA3 than mice exposed to a novel context. Over time, these differences disappeared, in keeping with the observation that memories become generalized. Optogenetically silencing DG or CA3 cells that were recruited during encoding of a fear-inducing context prevented expression of the corresponding memory. Mice with reduced neurogenesis displayed less contextual memory and less reactivation in CA3 but, surprisingly, normal reactivation in the DG. These studies suggest that distinct memory traces are located in the DG and in CA3 but that the strength of the memory is related to reactivation in CA3.

Read More
(Radio)active neurogenesis in the human hippocampus
2013 Stellate Comms 2013 Stellate Comms

(Radio)active neurogenesis in the human hippocampus

Kheirbek MA, Hen R (2013)

Cell

Fifteen years ago, the generation of new neurons in adulthood was documented in the human hippocampus, but lingering questions have remained about the extent of this process. In this issue of Cell, Spalding et al. provide elegant evidence for continued neurogenesis into adulthood at rates that suggest it may play a significant role in human behavior.

Read More
Repeated corticostriatal stimulation generates persistent OCD-like behavior
2013 Stellate Comms 2013 Stellate Comms

Repeated corticostriatal stimulation generates persistent OCD-like behavior

Ahmari SE, Spellman T, Douglass N, Kheirbek MA, Deisseroth K, Gordon JA, Hen R (2013)

Science

Although cortico-striato-thalamo-cortical (CSTC) circuit dysregulation is correlated with obsessive compulsive disorder (OCD), causation cannot be tested in humans. We used optogenetics in mice to simulate CSTC hyperactivation observed in OCD patients. Whereas acute orbitofrontal cortex (OFC)–ventromedial striatum (VMS) stimulation did not produce repetitive behaviors, repeated hyperactivation over multiple days generated a progressive increase in grooming, a mouse behavior related to OCD. Increased grooming persisted for 2 weeks after stimulation cessation. The grooming increase was temporally coupled with a progressive increase in light-evoked firing of postsynaptic VMS cells. Both increased grooming and evoked firing were reversed by chronic fluoxetine, a first-line OCD treatment. Brief but repeated episodes of abnormal circuit activity may thus set the stage for the development of persistent psychopathology.

Read More
Differential control of learning and anxiety along the dorso-ventral axis of the dentate gyrus
2013 Stellate Comms 2013 Stellate Comms

Differential control of learning and anxiety along the dorso-ventral axis of the dentate gyrus

Kheirbek MA, Drew LJ, Costantini DO, Burghardt N, Tannenholz L, Ahmari SE, Zeng H, Fenton AA, Hen R (2013)

Neuron

The dentate gyrus (DG), in addition to its role in learning and memory, is increasingly implicated in the pathophysiology of anxiety disorders. Here, we show that, dependent on their position along the dorsoventral axis of the hippocampus, DG granule cells (GCs) control specific features of anxiety and contextual learning. Using optogenetic techniques to either elevate or decrease GC activity, we demonstrate that GCs in the dorsal DG control exploratory drive and encoding, not retrieval, of contextual fear memories. In contrast, elevating the activity of GCs in the ventral DG has no effect on contextual learning but powerfully suppresses innate anxiety. These results suggest that strategies aimed at modulating the excitability of the ventral DG may be beneficial for the treatment of anxiety disorders.

Preview by Fournier and Duman (pdf)

Read More
Neurogenesis and generalization: A new approach to stratify and treat anxiety disorder
2012 Stellate Comms 2012 Stellate Comms

Neurogenesis and generalization: A new approach to stratify and treat anxiety disorder

Kheirbek MA, Klemenhagen KK, Sahay A, Hen R (2012)

Nature Neuroscience

Although an influence of adult neurogenesis in mediating some of the effects of antidepressants has received considerable attention in recent years, much less is known about how alterations in this form of plasticity may contribute to psychiatric disorders such as anxiety and depression. One way to begin to address this question is to link the functions of adult-born hippocampal neurons with specific endophenotypes of these disorders. Recent studies have implicated adult-born hippocampal neurons in pattern separation, a process by which similar experiences or events are transformed into discrete, non-overlapping representations. Here we propose that impaired pattern separation underlies the overgeneralization often seen in anxiety disorders, specifically post-traumatic stress disorder and panic disorder, and therefore represents an endophenotype for these disorders. The development of new, pro-neurogenic compounds may therefore have therapeutic potential for patients who display pattern separation deficits.

Read More
NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination
2012 Stellate Comms 2012 Stellate Comms

NR2B-dependent plasticity of adult-born granule cells is necessary for context discrimination

Kheirbek MA, Tannenholz L, Hen R (2012)

Journal of Neuroscience

Adult-generated granule cells (GCs) in the dentate gyrus (DG) exhibit a period of heightened plasticity 4 – 6 weeks postmitosis. However, the functional contribution of this critical window of plasticity to hippocampal neurogenesis and behavior remains unknown. Here, we show that deletion of NR2B-containing NMDA receptors from adult-born GCs impairs a neurogenesis-dependent form of LTP in the DG and reduces dendritic complexity of adult-born GCs, but does not impact their survival. Mice in which the NR2B-containing NMDA receptor was deletedfrom adult-born GCs did not differfrom controlsin baseline anxiety-like behavior or discrimination of very different contexts, but were impaired in discrimination of highly similar contexts. These results indicate that NR2B-dependent plasticity of adult-born GCs is necessary for fine contextual discrimination and is consistent with their proposed role in pattern separation.

Read More
Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation
2011 Stellate Comms 2011 Stellate Comms

Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation

Sahay A, Scobie KN, Hill SH, O’Carroll CM, Kheirbek MA, Burghardt N, Fenton AA, Dranovsky A, Hen R (2011)

Nature

Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation and can account for up to ten percent of the entire granule cell population. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning, environmental enrichment, exercise and chronic treatment with antidepressants. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions, as well as some of the behavioural effects of antidepressants, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal neurogenesis specifically, by targeting the cell death of adult-born neurons or by other mechanisms, may have therapeutic potential for reversing impairments in pattern separation and dentate gyrus dysfunction such as those seen during normal ageing.

Read More
Dopamine-dependent motor learning: Insight into L-DOPA’s long-duration response
2010 Stellate Comms 2010 Stellate Comms

Dopamine-dependent motor learning: Insight into L-DOPA’s long-duration response

Beeler JA, Cao ZFH, Kheirbek MA, Ding Y, Koranda J, Murakami M, Zhuang X (2010)

Annals of Neurology

Objective: Dopamine (DA) is critical for motor performance, motor learning, and corticostriatal plasticity. The relationship between motor performance and learning, and the role of DA in the mediation of them, however, remain unclear.
Methods: To examine this question, we took advantage of PITx3-deficient mice (aphakia mice), in which DA in the dorsal striatum is reduced by 90%. PITx3-deficient mice do not display obvious motor deficits in their home cage, but are impaired in motor tasks that require new motor skills. We used the accelerating rotarod as a motor learning task.
Results: We show that the deficiency in motor skill learning in PITx3(-/-) is dramatic and can be rescued with levodopa treatment. In addition, cessation of levodopa treatment after acquisition of the motor skill does not result in an immediate drop in performance. Instead, there is a gradual decline of performance that lasts for a few days, which is not related to levodopa pharmacokinetics. We show that this gradual decline is dependent on the retesting experience.
Interpretation: This observation resembles the long-duration response to levodopa therapy in its slow buildup of improvement after the initiation of therapy and gradual degradation. We hypothesize that motor learning may play a significant, underappreciated role in the symptomatology of Parkinson disease as well as in the therapeutic effects of levodopa. We suggest that the important, yet enigmatic long-duration response to chronic levodopa treatment is a manifestation of rescued motor learning.

Read More
A molecular dissociation between cued and contextual appetitive learning
2010 Stellate Comms 2010 Stellate Comms

A molecular dissociation between cued and contextual appetitive learning

Kheirbek MA, Beeler JA, Chi W, Zhuang X (2010) Learning and Memory

In appetitive Pavlovian learning, animals learn to associate discrete cues or environmental contexts with rewarding outcomes, and these cues and/or contexts can potentiate an ongoing instrumental response for reward. Although anatomical substrates underlying cued and contextual learning have been proposed, it remains unknown whether specific molecular signaling pathways within the striatum underlie one form of learning or the other. Here, we show that while the striatum-enriched isoform of adenylyl cyclase (AC5) is required for cued appetitive Pavlovian learning, it is not required for contextual appetitive learning. Mice lacking AC5 (AC5KO) could not learn an appetitive Pavlovian learning task in which a discrete signal light predicted reward delivery, yet they could form associations between context and either natural or drug reward, which could in turn elicit Pavlovian approach behavior. However, unlike wild-type (WT) mice, AC5KO mice could not use these Pavlovian conditioned stimuli to potentiate ongoing instrumental behavior in a Pavlovian-to-instrumental transfer paradigm. These data suggest that AC5 is specifically required for learning associations between discrete cues and outcomes in which the temporal relationship between conditioned stimulus (CS) and unconditioned stimulus (US) is essential, while alternative signaling mechanisms may underlie the formation of associations between context and reward. In addition, loss of AC5 compromises the ability of both contextual and discrete cues to modulate instrumental behavior.

Read More